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Abstract

This report details the design, implementation and investigation of a
range of low pass filters including an active state variable analogue fil-
ter, two infinite impulse response digital filters and three finite impulse
response digital filters. The report contrasts the expected theoretical fre-
quency response of the filters against the measured response of the filters,
and attempts to account for any discrepancies.

1 Introduction

This practical report follows in the wake of a theoretical assignment which had
us investigating the design and expected characteristics of a Butterworth low
pass filter. Using the Electronic Filter Design HandBook (Williams,1981), we
designed two analogue Butterworth filters, sharing a common cutoff frequency
but dissimilar topologies. We investigated the circuits using the matrix loop
equation, matrix node equation and state variable techniques where appropri-
ate. These all produced a common transfer function, which we investigated
using excel and matlab in order to discover its poles, frequency response char-
acteristics and impulse response. We translated the poles of this filter to poles
for a digital IIR filter by using the bilinear transformation, for sample frequen-
cies of both 48 kHz and 8 kHz. Using the transfer function skeleton provided
by Jonas (2005), we substituted the appropriate poles and obtained a discrete
transfer function for each sample frequency. We discovered the poles, frequency
response characteristics and unit sample response associated with these transfer
functions. We then set about implementing three different FIR digital filters us-
ing the rectangular, Hamming and Blackman windowing functions respectively.
We calculated forty one coefficients for each filter, and used these to calculate
the recurrence relation and subsequently the transfer function for each filter.
This transfer function was used within MatLab to determine the z-plane pole
zero diagrams and frequency responses for each filter.

Having established frequency responses and appropriate transfer functions
for all the filters, we set out to design and implement them and investigate the
accuracy of the modelled responses calculated in the assignment.
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Theory

Analogue filter

The original transfer function can be separated into two separate transfer func-
tions.
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IIR filters

The original transfer function for the IIR can also be separated into two sepa-
rate transfer functions.

H(z) =
(1 + z−1)3

(1− 0.1202z−1)(1− (0.1595− 0.5663i)z−1)(1− (0.1595 + 0.5663i)z−1)

H(z) = [
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(1−P1z−1)
][
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]

H(z) = [
(1 + z−1)

(1−P1z−1)
][

(1 + 2 ∗ z−1 + z−2)
(1− (P2 + P3)z−1 + P2P3z−2)

]

Procedure

I used a digital oscilloscope for all of my measurements. I made full use of
the graphical measurement tools present on the digital oscilloscope to acquire
values, removing the haphazard rounding effects inevitable in measuring small
wave forms against a scale with the naked eye. I set the oscilloscope to display
averaged results, which made the resulting signals incredibly crisp. The filters
were all supplied with a sinusoidal wave from a signal generator as input, and the
frequency response of all of the resulting filters was roughly measured between 0
and 2500 Hz, though this varied according to the stability of the filtered output
at these frequencies.

Analogue filter design

The filter can be physically constructed as 2 separate units due to its separable
transfer function. The first unit is a simple passive low pass filter comprised
of a resistor and capacitor in series. The second unit, which is adopted from
Williams (1981) handles the complex conjugate poles, and is far more sophis-
ticated. Each unit had a general transfer function of its own, and when these
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transfer functions were equated to the relevant member of the above separated
transfer function, they provided components values. This was not required for
the circuit acquired from Williams (1981), as the value calculations were already
related and simplified in terms of the real and imaginary components of the poles
of our filter, and all that was required was the denormalising of these poles by
multiplying by our ωc. These denormalised pole components were then used to
calculate our component values. The gain of the original transfer function was
calculated to be a half by setting s = 0 in the original transfer function, and
this gain was maintained by scaling R4 up by a factor of 2.

When placed in series the units formed a low pass active state variable filter,
with Butterworth characteristics.

Component values were calculated :

C 0.01 uF
R4 16k

R2,3 8k
R1 8k
R 1k
Ri 600
Ci 0.132 uF

Table 1: Denormalised values calculated using relations from Williams (1981)

The circuit was built under Microcap initially in order to test the proposed
design before attempting physical implementation.
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Figure 1: Analogue circuit design
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Digital filter design

The digital filters were all to be implemented on a Motorola DSP56002 mi-
crochip. Base code was supplied (Appendix 1&2) and we had to familiarise
ourselves with the assembly code and subsequently alter it in order to imple-
ment the filters correctly.

The source signal was sampled and split into two streams, one of which was
filtered and the other left unprocessed. The filtered signal was then compared
with the unprocessed signal, rather then the original source, in order to factor
in any inherent phase shifting in the operation of the chip.

In an attempt to minimise time wastage, I hit each filter with an impulse
from an impulse generator after coding it, in order to check the response of the
filter before departing on any frequency response measurement. The filters were
also initially probed roughly by rapidly increasing the frequency up from zero
in an attempt to spot the obvious Butterworth characteristic of a flat passband
and the predicted -3dB drop at ωc .

IIR digital filter design

The sub routine in Appendix 1 was supplied. The necessary coefficients were
calculated using the separable transfer function shown in the IIR theory.

fsample[Hz] P1 (P2 + P3) P2P3

8000 0.1202 0.3190 0.3461
48000 0.7685 1.7123 0.7720

Table 2: Matlab generated values for IIR coefficients

These calculated values were halved and then substituted into the code in
the appropriate locations.

FIR digital filter design

The sub routine in Appendix 2 was supplied. The necessary coefficients had
been calculated previously in the assignment, and were substituted into the
code in the appropriate locations. These coefficients had to be normalised to
be less then one, as the Motorola chip uses fixed point arithmetic. This was
achieved by dividing throughout by a number slightly larger then the largest
coefficient and had no impact on the filter design as the ratio between the various
coefficients defines the behaviour of the filter.
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Results

1.1 Analogue Frequency Response

1.1.1 MicroCap

The frequency response predicted by Microcap is shown below.
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Figure 2: MicroCap bode plot of schematic gain response
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Figure 3: MicroCap plot of schematic phase response
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1.1.2 Constructed filter

The measured frequency response of the constructed filter compared to the
response predicted for the filter in the assignment, is shown below.
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Figure 4: Comparison of theory vs measurements : analogue gain
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Figure 5: Comparison of theory vs measurements : analogue phase

1.2 Digital Frequency Response

1.2.1 IIR

The measured frequency response of the coded IIR filter compared to the re-
sponse predicted for the filter in the assignment, is shown below.
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iir, 8000hz,gain response
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Figure 6: Comparison of theory vs measurements : 8kHz fsample : gain
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Figure 7: Comparison of theory vs measurements : 8kHz fsample : phase
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iir, 48000hz,gain response
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Figure 8: Comparison of theory vs measurements : 48kHz fsample : gain

iir, 48000hz,phase response
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Figure 9: Comparison of theory vs measurements : 48kHz fsample : phase
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1.2.2 FIR

The measured frequency response of the coded FIR filter is shown below.

Digital filter response (Rectangular window)
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Figure 10: Empirically measured gain response : Rectangular window, fsample

8kHz

Digital filter response (Hamming window)
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Figure 11: Empirically measured gain response : Hamming window, fsample

8kHz
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Digital filter response (Blackman window)
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Figure 12: Empirically measured gain response : Blackman window, fsample

8kHz
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The measured gain response of the coded FIR filter compared to the response
predicted for the filter in the assignment, is shown below. The phase response
for all three filters was theoretically almost identical, and these are therefore
plotted on one axis with the measured phase shift.
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Figure 13: Rectangular Window : Comparison of theory vs measurements :
fsample 8kHz : gain

0 500 1000 1500 2000 2500 3000 3500 4000
-160

-140

-120

-100

-80

-60

-40

-20

0

20
Hamming window, 2khz LPF,sample frequency 8khz

theta [rads]

no
rm

ali
se

d g
ain

 [d
B]

 

Figure 14: Hamming Window : Comparison of theory vs measurements : fsample

8kHz : gain
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Figure 15: Blackman Window : Comparison of theory vs measurements :
fsample 8kHz : gain
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Figure 16: Empirically measured phase response : all windows, fsample 8kHz
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Discussion

The impulse responses of the digital filters were all inverted, but resembled
the impulse response predicted throughout the assignment, and therefore cor-
responded closely to theory. The 48 kHz IIR filter intially returned an odd
impulse response when tested, but this was subsequently rectified by greatly
diminishing the gain of the filter and leaving everything else exactly the same.

Both the analogue filter, and IIR filters behaved exactly as theory predicted,
with the measured readings for gain and phase fitting the theoretical curves
perfectly.

The FIR filters’ gain response, in isolation, looks similar to what we were
expecting. The rectangular window filter had rippling occurring at the edge
of the passband as expected, and this ripple on the edge of the passband was
also present in the Hamming window filter, though to a far lesser extent. The
Blackman window filter, on the other hand, had its gain rolling off smoothly from
the passband. To this extent, the measured response reinforced the theoretical
predictions.

What was unusual was that the Blackman filter had pronounced variation in
the passband, in comparison to the measured gain response in the passband of
the other filters and especially in comparison to the matlab Blackman window
model which had the smoothest passband. What bares serious consideration is
that this deviation in the passband is only 2 mV. The values that were gauged by
the scope were not completely stable, and over an appreciable measuring period
there was some minor fluctuation around the resting value. Oddly enough, these
fluctuations were not in the first decimal place but in the full mV range. I am
therefor not convinced that this accurately reflects the nature of the filter.

The lack of correlation between the theory and measured responses of the
FIR filters is emphasised in the comparative plots. The FIR filters all have
relatively flat passbands (neglecting rippling), and run off at the correct cut-off
frequency, although they do so with a far milder slope then that predicted by the
theory. Since my input signal was very weak, I had trouble attaining measure-
ments beyond the -3dB point, as the filtered response was almost completely
attenuated, and therefore failed to obtain a measurement lying on the lobes.
I attribute this to the incredibly low voltage of the signal I was supplying the
filter with. There was a narrow line to walk, with too large a signal overloading
the chip and distorting the responses, and too small a signal making gathering
readings difficult. I chose to err on the extremely weak side, and relied on the
incredible senses of the oscilloscope to visual measure the signal response.

I initially ignored the unfiltered signal offered by the chip, and compared
the frequency response of the filtered signal directly to the input. This was fine
for the gain response of the filters although it neglected phase shifting effects
inherent to the chip. This was remedied by repeating all the phase measurements
for the FIR filters, and these phase measurements complied exactly with theory,
lying exactly on the predicted phase line basically shared by all three FIR filters

I was amazed by the correlation between the predicted responses and mea-
sured responses. I have come to expect real world complications to introduce all
manner of errors and lead to deviations away from the models. It was incred-
ible to derive the transfer function from the analogue filter via analyse, locate
the poles of this function via minor algebra, transform these poles and then to
obtain the discrete transfer functions for the IIR filters. This transfer function
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then offered the coefficients required by the assembler code in order to imple-
ment the IIR filter. In retrospect it is a remarkably simple process to digitise
existing analogue filters, and with a high sample frequency the filter will have
almost identical characteristics.

Conclusion

There was incredible consistency between the theoretical and measured fre-
quency response of the filters. The analogue filter and IIR filters responded
exactly as predicted. The FIR filters followed the predicted phase perfectly, but
deviated from predictions of their gain response at the cut-off frequency. This
deviation is most likely attributable to the small input signal supplied to the
filter at the time of investigation, and not to the design of the filter itself.
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3 Appendix 1 : IIR CODE

nsec equ 2 ;Ã2ÃpoleÃfilter

igain equ 0.0008637875 ;ÃinitialÃgainÃsuppliedÃwithÃcode,ÃandÃresultsÃinÃidealÃfunctionality
;
org x: ;ÃlocationÃofÃfilterÃstateÃvariablesÃinÃx:
state bsm 2*nsec,0 ;

org y: ;ÃlocationÃofÃfilterÃcoefficientsÃinÃy:
buffer M,4*nsec

;truncatedÃcoefficients

;48000
;P2Ã+ÃP3Ã=Ã1.7123
;P2*P3Ã=Ã0.7720
;P1Ã=Ã0.7685

TheÃassignmentÃexploredÃtheÃdesignÃandÃmodellingÃofÃanÃanalogueÃfilterÃandÃbothÃanÃFIRÃandÃIIRÃdigitalÃfilter.
;8000
;P2Ã+ÃP3Ã=Ã0.3190
;P2*P3Ã=Ã0.3461
;P1Ã=Ã0.1202

;UseÃfullÃcoefficientsÃinÃfilters
;48000Ã&Ã0.76850344092285Ã&ÃÃ1.71225748948494Ã&ÃÃ0.77195859080503\\

;halveÃcalculatedÃvalues
;48000Ã0.38425172046143ÃÃÃ0.85612874474247ÃÃÃ0.38597929540252
;conjugateÃpoles
coef dc +0.3859792954 ;ÃDenominatorÃz^-2
dc -0.8561287447 ;ÃDenominatorÃz^-1
dc +0.5000000000 ;ÃNumeratorÃz^-2
dc $7fffff ;ÃNumeratorÃz^-1Ã(BiggestÃnumberÃlessÃthenÃ1)

;realÃpole
dc Ã0.0000000000 ;ÃDenominatorÃz^-2
dc -0.3842517204 ;ÃDenominatorÃz^-1
dc Ã0.0000000000 ;ÃNumeratorÃz^-2
dc +0.5000000000 ;ÃNumeratorÃz^-1

;8000
;sameÃasÃaboveÃonlyÃwithÃdifferentÃcoefficients

endbuf

org p:

;IIRÃsetupÃjustÃreturns
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IIRsetup
rts

IIR
ori #$08,mr ;ÃsetÃx2ÃscalingÃmode
move #state,r0 ;ÃpointÃtoÃfilterÃstate
move #coef,r4 ;ÃpointÃtoÃfilterÃcoefficients
move a,y0
move #igain,y1
;mpyÃcompleteÃmultiplicationsÃandÃ2ÃmovesÃinÃoneÃcycle
mpy y0,y1,aÃÃx:(r0)+,x0Ãy:(r4)+,y0
do #nsec,endIIR
;multiplyÃandÃaccumulate
mac -x0,y0,aÃx:(r0)-,x1Ãy:(r4)+,y0
macr -x1,y0,aÃx1,x:(r0)+Ãy:(r4)+,y0
mac x0,y0,aÃÃa,x:(r0)+ÃÃy:(r4)+,y0
mac x1,y0,aÃÃx:(r0)+,x0Ãy:(r4)+,y0
endIIR
rnd a
andi #$f7,mr ;ÃresetÃscalingÃmode
rts

4 Appendix 2 : FIR CODE

ntap equ 41

org x:
cycbuf bsm ntap,0

org y:
buffer M,ntap
;SoÃfollowÃtheÃFIRÃcoefficientsÃwhichÃareÃdependentÃonÃourÃwindowingÃmethod
;BlackmanÃfilter
weights dc 0
dc -0.0001/1.001
dc 0
dc 0.0008/1.001
dc 0
dc -0.0028/1.001
dc 0
dc 0.0071/1.001
dc 0
dc -0.0154/1.001
dc 0
dc 0.0299/1.001
dc 0
dc -0.0546/1.001
dc 0
dc 0.0985/1.001
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dc 0
dc -0.1936/1.001
dc 0
dc 0.6302/1.001
dc 1/1.001
dc 0.6302/1.001
dc 0
dc -0.1936/1.001
dc 0
dc 0.0985/1.001
dc 0
dc -0.0546/1.001
dc 0
dc 0.0299/1.001
dc 0
dc -0.0154/1.001
dc 0
dc 0.0071/1.001
dc 0
dc -0.0028/1.001
dc 0
dc 0.0008/1.001
dc 0
dc -0.0001/1.001
dc 0

endbuf

org p:
FIRsetup
move #cycbuf,r0
move #weights,r4
move #ntap-1,m0
move m0,m4
rts

FIR move a,x:(r0)
clr a x:(r0)+,x0 y:(r4)+,y0
rep #ntap-1
mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0
macr x0,y0,a (r0)-
rts
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