
Signal Processing Assignment

Donald Carr

May 18, 2005

Question 1

Common facts

My -3 dB frequency was : 2 kHz
∴ ωc = 2π2000

The circuits were taken from the Electronic Filter Design Handbook (Williams,
1981). Standard values were acquired for the respective configurations and de-
normalised accordingly using the FSF and Z adjustment.

”Π” CLC

Rs = 600 Ω
C1 = 0.132 µF
L2 = 95.5 mL
C3 = 0.132 µF
Ro = 600 Ω

L2

C1
C2

Ro

Rs

Figure 1: The ”π” CLC circuit
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”T” LCL

Rs = 600 Ω
L1 = 0.048 mL
Standard values were acquired C2 = 0.265 µF
L3 = 0.048 mL
Ro = 600 Ω

Rs

C2

L1 L3

Ro

Figure 2: The ”T” LCL circuit
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Question 2 : The T configuration

Matrix loop equation

Rs

L1 L3

RoC2

Figure 3: The ”T” LCL circuit

For the sake of convenience I have dropped the explicit time dependence
from the terms. Similarly, I have dropped the explicit s dependence of the
terms following the Laplace transform.

Loop 1

∑
v = 0 = vRs + vL1 + vC2 − u

0 = i1Rs + L1
di1
dt

+
1
C2

∫ t

0

(i1 − i2)dτ + v(0)− u

0 =
di1
dt

Rs + L1
d2i1
dt

+
1
C2

(i1 − i2)− du

dt

=> 0 = sI1Rs + L1s
2I1 +

1
C2

(I1 − I2)− sU (Laplace)

0 = I1Rs + L1sI1 +
1

sC2
(I1 − I2)− U

U = (Rs + sL1 +
1

sC2
)I1 − 1

sC2
I2

Loop 2

∑
v = 0 = vRo + vL3 − vC2

0 = i2Ro + L3
di2
dt

− 1
C2

∫ t

0

(i1 − i2)dτ − v(0)

0 =
di2
dt

Ro + L3
d2i2
dt

− 1
C2

(i1 − i2)dτ

=> 0 = sI2Ro + L3s
2I2 − 1

C2
(I1 − I2)dτ (Laplace)

0 = I2Ro + L3sI2 − 1
sC2

(I1 − I2)dτ
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0 =
−1
sC2

I1 + (Ro + sL3 +
1

sC2
)I2

[
Rs + sL1 + 1

sC
−1
sC−1

sC Ro + sL3 + 1
sC

] [
I1

I2

]
=

[
U
0

]

[
I1

I2

]
=

[
Rs + sL1 + 1

sC
−1
sC−1

sC Ro + sL3 + 1
sC

]−1 [
U
0

]

∴ I2 =
U

sC2RsRo + s2CL3Rs + s2CL1Ro + s3CL1L3 + sL1 + sL3 + Rs + Ro

But : y = i2Ro

∴ Y = I2Ro

∴ Y =
URo

sC2RsRo + s2CL3Rs + s2CL1Ro + s3CL1L3 + sL1 + sL3 + Rs + Ro

Since : y = h ∗ u

Y = HU

H =
Y

U

H =
Ro

sC2RsRo + s2CL3Rs + s2CL1Ro + s3CL1L3 + sL1 + sL3 + Rs + Ro

Since L1 = L3 = L, Rs = Ro = R, C

H =
R

CL2

s3 + 2R
L s2 + ( 2

LC + R2

L2 )s + 2R
L2C

After substituting in component values and reducing in terms of ωc

H(s) =
ω3

c

2

s3 + 2ωcs2 + 2ω2
cs + ω3

c
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state variable technique

di1
dt

= a11i1 + a12v2 + a13i3 + b11u

dv2

dt
= a21i1 + a22v2 + a23i3 + b21u

di3
dt

= a31i1 + a32v2 + a33i3 + b31u

y = c11i1 + c12v2 + c13i3 + d11u

dx

dt
= [A]x + [B]u

∴ sX = [A]X + [B]U
∴ (s[I]− [A])X = [B]U

∴ X = (s[I]− [A])−1[B]U
and y = [C]x + [D]u

∴ Y = [C]X + [D]U

∴ Y =
[C]adj(s[I]− [A])T [B]U

det(s[I]− [A])
+ [D]U

But H =
Y

U
∴ H =

[C]adj(s[I]− [A])T [B]
det(s[I]− [A])

+ [D]

Where :

(s[I]−[A]) =




s + R
L

1
L 0

−1
C s 1

C

0 −1
L s + R

L


 , [C] =

[
0 0 Ro

]
, [B] =




1
L1

0
0


 , [D] =

[
0

]

det(s[I]− [A]) = s3 + (
Ro

L3
+

Rs

L1
)s2 + (

1
L3C2

+
1

L1C2
+

RoRs

L3L1
)s +

Ro + Rs

L1L3C2

and [C]adj(s[I]− [A])T [B] =
Ro

CL1L3

∴ H(s) =
Ro

CL1L3

s3 + (Ro

L3
+ Rs

L1
)s2 + ( 1

L3C2
+ 1

L1C2
+ RoRs

L3L1
)s + Ro+Rs

L1L3C2

After substituting in component values and reducing in terms of ωc

H(s) =
ω3

c

2

s3 + 2ωcs2 + 2ω2
cs + ω3

c

It was very reassuring that both the matrix loop equation and state variable
technique produced the same transfer function for their common circuit.
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1 2

L2

C1
C2

Ro

Rs

Figure 4: The ”π” CLC circuit

Question 3

Matrix node equation

Node 1

∑
i = 0 = iRs + iL2 + iC1

0 =
vRs

Rs
+ C1

dv

dt
+

1
L2

∫ t

0

vdτ + i(0)

0 =
u− v1

Rs
+ C1

d(0− v1)
dt

+
1
L2

∫ t

0

(v2 − v1)dτ + i(0)

0 =
du
dt − dv1

dt

Rs
− C1

d2(v1)
dt

+
1
L2

(v2 − v1)

=> 0 =
s(U − V1)

Rs
− s2C1V1 +

1
L2

(V2 − V1) (Laplace)

0 =
U − V1

Rs
− sC1V1 +

1
sL2

(V2 − V1)

U = (1 + sC1Rs +
Rs

sL2
)V1 − Rs

sL2
V2

Node 2

∑
i = 0 = iL2 + iC2 + iRo

0 =
vRo

Ro
+ C2

dv

dt
+

1
L2

∫ t

0

vdτ + i(0)

0 =
v2

Ro
+ C2

d(v2)
dt

− 1
L2

∫ t

0

(v1 − v2)dτ − i(0)

0 =
dv2
dt

Ro
+ C2

d2(v2)
dt

− 1
L2

(v1 − v2)

=> 0 =
sV2

Ro
+ s2C2V2 − 1

L2
(V1 − V2) (Laplace)

0 =
V2

Ro
+ sC2V2 − 1

sL2
(V1 − V2)
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0 =
−1
sL2

V1 + (
1

sL2
+ sC3 +

1
Ro

)V2

[
(1 + sC1Rs + Rs

sL2
) −Rs

sL2−1
sL2

( 1
sL2

+ sC3 + 1
Ro

)

] [
V1

V2

]
=

[
U
0

]

[
V1

V2

]
=

[
(1 + sC1Rs + Rs

sL2
) −Rs

sL2−1
sL2

( 1
sL2

+ sC3 + 1
Ro

)

]−1 [
U
0

]

But : y = v2

∴ Y = V2

∴ Y =
1

det

U

sL2

where : sL2 × det =

c1RsC3L2(s3 + ( 1
C1Rs

+ 1
C3Ro

)s2 + ( 1
C1RsC3Ro

+ 1
C3L2

+ 1
C1L2

)s + 1
RoC1C3L2

+
1

RsC1C3L2
)

But : Y = HU

∴ H =
1

c1RsC3L2

(s3 + ( 1
C1Rs

+ 1
C3Ro

)s2 + ( 1
C1RsC3Ro

+ 1
C3L2

+ 1
C1L2

)s + 1
RoC1C3L2

+ 1
RsC1C3L2

)

After substituting in component values and reducing in terms of ωc

H(s) =
ω3

c

2

s3 + 2ωcs2 + 2ω2
cs + ω3

c
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state variable technique

di1
dt

= a11i1 + a12v2 + a13i3 + b11u

dv2

dt
= a21i1 + a22v2 + a23i3 + b21u

di3
dt

= a31i1 + a32v2 + a33i3 + b31u

y = c11i1 + c12v2 + c13i3 + d11u

Identical algebra to that covered in Question 2 : state variable

∴ H =
[C]adj(s[I]− [A])T [B]

det(s[I]− [A])
+ [D]

(s[I]−[A]) =




s + 1
RsC1

1
C1

0
−1
L2

s 1
L2

0 −1
C3

s + 1
RoC3


 , [C] =

[
0 0 1

]
, [B] =




1
RsC1

0
0


 , [D] =

[
0

]

det(s[I]− [A]) =

s3+( 1
RoC1

+ 1
RsC3

)s2+( 1
C1L2

+ 1
C3L2

+ 1
RoRsC1C3

)s+ 1
RoRs

+ 1
RsRoC1L2

+ 1
RsRoC3L2

and [C]adj(s[I]− [A])T [B] =
1

RsC1L2C3

∴ H(s) =

1
RsC1L2C3

s3+( 1
RoC1

+ 1
RsC3

)s2+( 1
C1L2

+ 1
C3L2

+ 1
RoRsC1C3

)s+ 1
RoRs

+ 1
RsRoC1L2

+ 1
RsRoC3L2

After substituting in component values and reducing in terms of ωc

H(s) =
ω3

c

2

s3 + 2ωcs2 + 2ω2
cs + ω3

c

Again the separate derivations converged on the same transfer function, and
corroborated the earlier transfer function garnered from the ”T” configuration
topology. This consistency verified the inherent characteristics of the filter which
are independent of the topology we choose to adopt.
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Question 4

Characteristic polynomial : s3 + s22ωc + s2ω2
c + ω3

c

System differential equation : d3y
dt + 2ωc

d2y
dt + 2ω2

c
dy
dt + ω3

cy = ω3
c

2 U

Question 5

There are no zeros since there are no s terms in the numerator. We need to dis-
cover the poles of the transfer function, so we simply factorise the denominator.

1
s3 + s22ωc + s2ω2

c + ω3
c

1
(s + ωc)(s2 + ωcs + ω2

c )
1

(s + ωc)(s + ωc

2 + j
√

3
2 ωc)(s + ωc

2 − j
√

3
2 ωc)

∴ eigenfrequencies : s = −ωc

or

s = −ωc

2
+ j

√
3

2
ωc

or

s = −ωc

2
− j

√
3

2
ωc

jω

σ

ωc

Figure 5: Pole Zero diagram

Since the poles are all on the left hand side of the imaginary axis, we know
from our notes that the filter is stable.

9



Question 6

H(s) =
ω3

c

2

s3 + 2ωcs2 + 2ω2
cs + ω3

c

H(s) =
ω3

c

2

(s + ωc)(s + ωc

2 + j
√

3
2 ωc)(s + ωc

2 − j
√

3
2 ωc)

H(jω) =
ω3

c

2

(jω + ωc)(jω + ωc

2 −
√

3
2 jωc)(jω + ωc

2 +
√

3
2 jωc)

Magnitude is given by :

|H(jω)| =
|ω3

c

2 |
|(jω + ωc)||(jω + ωc

2 −
√

3
2 jωc)||(jω + ωc

2 +
√

3
2 jωc)|

Phase is given by :

∠H(jω) = −∠(jω + ωc)− ∠(jω +
ωc

2
−
√

3
2

jωc)− ∠(jω +
ωc

2
+
√

3
2

jωc)
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3rd order Butterworth high pass filter wc = 2 khz
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Figure 6: excel : Normalised gain vs frequency
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Figure 7: excel : phase vs frequency
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Figure 8: matlab : gain vs frequency
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Figure 9: matlab : phase vs frequency
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These graphs, which were derived independently in excel and matlab, are
consistent with each other and show the transfer function behaving as expected,
with the flat passband characterstic of a Butterworth filter. The filter allows
low frequencies through, and attenuates the amplitude of the input signal by√

2 at the cutoff frequency. (ωc ≈ 12000 rads)

Question 7

Looking at the pole zero diagram, we can imagine a third dimension, repre-
senting gain, stemming out of the page with the poles rising off to infinity and
stretching the surrounding area upwards. Looking at the imaginary axis, we can
see the angular frequency running off to infinity in both directions. At the origin
the gain is a maximum, with all three poles pulling up the surrounding area. As
the angular frequency increases away in both directions the gain diminishes as
the vector distance from all three poles steadily increases. The flat passband ev-
ident in the gain vs frequency graph, is conveyed in the varying real/imaginary
components of the poles. The completely real pole has the largest impact on
gain, with the conjugate imaginary poles constructively adding their gain as the
gain from the real pole rolls off.

Question 8

α

(s + ωc)(s + ωc

2 + j
√

3
2 ωc)(s + ωc

2 − j
√

3
2 ωc)

=
K1

(s + ωc)
+

K2

(s + ωc

2 + j
√

3
2 ωc)

+
K3

(s + ωc

2 − j
√

3
2 ωc)

∴
ω3

c

2

(s + ωc)(s + ωc

2 + j
√

3
2 ωc)(s + ωc

2 − j
√

3
2 ωc)

=
K1

(s + ωc)
+

K2

(s + ωc

2 + j
√

3
2 ωc)

+
K3

(s + ωc

2 − j
√

3
2 ωc)
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Question 8 wc 12566.37061

h = 100
wc/2 = 6283.185307
root(3)/2*jwc = 10882.7961854053i

p1 p2 p3
wc -wc/2 - j(root(3)/2*wc) -wc/2 + j(root(3)/2*wc)
-12566.37061 -6283.18530717959-10882.7961854053i -6283.18530717959+10882.7961854053i

alpha 9.92201E+11

residues
k1 6283.18530717961
k2 -3141.5926535898+1813.79936423422i
k3 -3141.5926535898-1813.79936423422i

Figure 10: Excel calculated residues

4/23/05 2:10 PM MATLAB Command Window 1 of 1

 
alpha =
 
  9.9220e+011
 
 
K1 =
 
  6.2832e+003
 

 
K2 =
 
 -3.1416e+003 +1.8138e+003i
 
 
K3 =
 
 -3.1416e+003 -1.8138e+003i

Figure 11: Matlab calculated residues
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Question 9

The Laplace transform of
α

(s+ωc)(s+
ωc
2 +j

√
3

2 ωc)(s+
ωc
2 −j

√
3

2 ωc)
≈ K1e

p1t + K2e
p2t + K3e

p3t = h(t)

Where :
K1 = 6283.18530717961
K2 = -3141.5926535898+1813.79936423422i
K3 = -3141.5926535898-1813.79936423422i
p1 = -12566.37061
p2 = -6283.18530717959-10882.7961854053i
p3 = -6283.18530717959+10882.7961854053i

∴ h(t) = K1e
p1t + K2e

p2t + K3e
p3t

h(t) = K1e
12566.37061t + |K|e−6283.18530717959t(ei∠K2e−i10882.7961854053t + ei∠K3ei10882.7961854053t)

Since ∠K2 = ∠K3 (Conjugate pair)
h(t) = K1e

12566.37061t + |K|e−6283.18530717959t(e−i(∠K3+10882.7961854053t) + ei(∠K3+10882.7961854053t))
h(t) = K1e

12566.37061t + 2|K|e−6283.18530717959tcos(∠K3 + 10882.7961854053t)
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Figure 12: Excel impulse response
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Figure 13: MatLab impulse response
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Question 10

Using the the bilinear transform within Matlab :
Pi = 1+ T

2 Pi

1−T
2 Pi

fsample[hz] P1 P2 P3

48000 0.7685 0.8561 - 0.1975i 0.8561 + 0.1975i
8000 0.1202 0.1595 - 0.5663i 0.1595 + 0.5663i

Table 1: Matlab generated poles for the digital filters

This bilinear transformation shifts the frequency response of the resulting
filters. The higher the sampling frequency, the milder the resulting shift in
frequency response. The filter with fsample = 48kHz therefore basically retains
its initial frequency characteristics, while the filter with fsample = 8kHz has its
fc dropped to 1700Hz.

Question 11

H(z) = κ
(1 + z−1)N−M

∏M
i=1(1− Ziz

−1)∏N
i=1(1− Piz−1)

Where there are M = 0 zeros and N = 3 poles

∴ H(z) = κ
(1 + z−1)3∏3

i=1(1−Piz−1)
Where the values of the poles are given in table 1 (above) and

κ = K(
T

2
)N−M

∏M
i=1(1− T

2 Zi)∏N
i=1(1− T

2 Pi)

κ =
ω3

c

2
(
T

2
)3

1∏3
i=1(1− T

2 Pi)

frequency κ
8000 0.0565

48000 0.000864

Table 2: κ values

17



for fsample = 48000Hz

H(z) = κ48000
(1 + z−1)3

(1− 0.7685z−1)(1− (0.8561− 0.1975i)z−1)(1− (0.8561 + 0.1975i)z−1)

for fsample = 8000Hz

H(z) = κ8000
(1 + z−1)3

(1− 0.1202z−1)(1− (0.1595− 0.5663i)z−1)(1− (0.1595 + 0.5663i)z−1)

Question 12

There are three zeros at -1, divulged from the numerator term. The denominator
reveals three poles, demarcated by Xes on the graph

Re(z)

Im(z)

1-1

Figure 14: 48000 Hz filter Pole Zero diagram

Re(z)

Im(z)

1-1

Figure 15: 8000 Hz filter Pole Zero diagram
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Question 13

Similarly to question 6
Magnitude :

|H(z)| = κ
|(1 + z−1)|3

|(1− P1z−1)||(1− P2z−1)||(1− P3z−1)|
Where κ is taken from table 2 and P values are taken from table 1

Phase :
∠H(z) = Σ∠(zeros)− Σ∠(poles)
∠H(z) = 3× ∠(1 + z−1)− ∠(1− P1z

−1)− ∠(1− P2z
−1)− ∠(1− P3z

−1)

Both Matlab and excel were used in order to establish corroborative evidence
for the frequency response of the filter. I felt this was necessary since the shifting
inherent in the bilinear transform was not immediate obvious, and I was initially
concerned with my results.
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Figure 16: Excel: 8000 Hz digital filter normalised gain
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Figure 17: Excel: 8000 Hz digital filter phase response
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Figure 18: Excel: 48000 Hz digital filter normalised gain
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Figure 19: Excel: 48000 Hz digital filter phase response
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Figure 20: Matlab : 8000 Hz digital filter normalised gain
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Figure 21: Matlab : 8000 Hz digital filter phase response
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Figure 22: Matlab : 48000 Hz digital filter normalised gain
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Figure 23: Matlab : 48000 Hz digital filter phase response
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Question 14

H(z) = κ
(1 + z−1)3

(1− P1z−1)(1− P2z−1)(1−P3z−1)

But : H(z) =
Y (z)
X(z)

∴ Y (z)
X(z)

= κ
(1 + z−1)3

(1− P1z−1)(1− P2z−1)(1−P3z−1)

Y (z)× (1− P1z
−1)(1− P2z

−1)(1− P3z
−1) = X(z)× κ(1 + z−1)3

Y (z)× (1− P1z
−1 − P2z

−1 −P3z
−1 + P1P2z

−2 + P2P3z
−2 + P1P3z

−2 − P1P2P3z
−3) =

X(z)× κ(1 + 3z−1 + 3z−2 + z−3)
Using the inverse Z transform properties given on pg. 25 of the digital section

yn −P1yn−1 − P2yn−1 − P3yn−1 + P1P2yn−2 + P2P3yn−2 + P1P3yn−2 − P1P2P3yn−3) =
κ(xn + 3xn−1 + 3xn−2 + xn−3)

yn = (P1 + P2 + P3)yn−1 − (P1P2 + P2P3 + P1P3)yn−2 + P1P2P3yn−3 + κ(xn + 3xn−1 + 3xn−2 + xn−3)
yn = αyn−1 − βyn−2 + γyn−3 + κ(xn + 3xn−1 + 3xn−2 + xn−3)

This recurrence relation is common to both filters, with the coefficients of
the terms assuming different values depending on the sampling frequency.

κ

yn
xn

−β

3

3

1

z−1

z−1

z−1 z−1

z−1

z−1
1

1

1

1 1 1

α

γ

Figure 24: Signal flow diagram for both filters

The following coefficients were calculated in Matlab :
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fsample[Hz] α β γ
8000 0.4392 0.3845 0.0416

48000 2.4808 2.0878 0.5933

Table 3: Matlab generated values for α,β and γ

Question 15

The unit sample responses of both digital filters corresponded strongly to the
original impulse response calculated for the analogue filter, with the impulse
response being clearly recognisable. The lower the initial sampling frequency,
the faster the emergence of the recognisable response was when observing the
discrete impulse response.
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Figure 25: Matlab : 48000 Hz filter impulse response
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Figure 26: Matlab : 8000 Hz filter impulse response
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Question 16

In designing an ideal low pass filter, we want a top-hat function in the frequency
domain, ranging from −ωc to ωc

-ωc ωc

1

ω

Figure 27: Ideal low pass filter frequency response

This transforms, via the inverse Fourier transform, into a sinc function in the
time domain. We sample the signal at 41 different points in order to discover
the magnitude of the signal at that point and the sampled impulse response can
subsequently be digitally recreated by summing Dirac functions multiplied by
these magnitudes.

The function is non-causal, so it must be shifted in the positive direction,
and incomplete since the sinc function continues on to infinity in reality and
we have discarded all the unsampled points. This impacts on the accuracy of
recreation, and there are many different windowing methods devoted to easing
this cut-off point.

As is clearly seen from graph 29, the different windowing functions attenuate
the function to differing degrees and in different ways, as it approaches its cutoff
frequency.

Our coefficients (ai)are calculated by multiplying the shifted magnitudes of
the sampled points by an appropriate windowing coefficient.
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Figure 28: Recreated impulse response
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Figure 29: Different windowing methods
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no Rectangular Hamming Blackman
1 0 0 0
2 -0.0335 -0.0029 -0.0001
3 0 0 0
4 0.0374 0.0049 0.0008
5 0 0 0
6 -0.0424 -0.0091 -0.0028
7 0 0 0
8 0.049 0.0162 0.0071
9 0 0 0

10 -0.0579 -0.0271 -0.0154
11 0 0 0
12 0.0707 0.0433 0.0299
13 0 0 0
14 -0.0909 -0.0681 -0.0546
15 0 0 0
16 0.1273 0.1102 0.0985
17 0 0 0
18 -0.2122 -0.2016 -0.1936
19 0 0 0
20 0.6366 0.633 0.6302
21 1 1 1
22 0.6366 0.633 0.6302
23 0 0 0
24 -0.2122 -0.2016 -0.1936
25 0 0 0
26 0.1273 0.1102 0.0985
27 0 0 0
28 -0.0909 -0.0681 -0.0546
29 0 0 0
30 0.0707 0.0433 0.0299
31 0 0 0
32 -0.0579 -0.0271 -0.0154
33 0 0 0
34 0.049 0.0162 0.0071
35 0 0 0
36 -0.0424 -0.0091 -0.0028
37 0 0 0
38 0.0374 0.0049 0.0008
39 0 0 0
40 -0.0335 -0.0029 -0.0001
41 0 0 0

Table 4: Table of coefficients
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Question 17

The recreated signal is therefore represented by :

h(n) = Σ40
i=0aiδ(n− i)

The recurrence relation is there given by :
y(n) = h(n) ∗ x(n)
y(n) = Σ40

i=0aiδ(n− i) ∗ x(n)
y(n) = Σ40

i=0aix(n− i)(unit impulse convolution)

The transfer function can be deduced as :

y(n) = Σ40
i=0aix(n− i)

Y (z) = Σ40
i=0aiX(z)z−i(Z transform)

Y (z)
X(z)

= Σ40
i=0aiz

−i

∴ H(z) = Σ40
i=0aiz

−i

Question 18
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Figure 30: Rectangular window, pole zero diagram
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Figure 31: Hamming window, pole zero diagram

For some reason unbeknownst to me, the matlab roots function malfunc-
tioned at 2000 kHz, leaving me with a severely unsatisfactory Blackman’s win-
dow pole zero diagram. At 1995 kHz, the function stabilised, and gave me a
pole zero diagram that was more readily believable in the context of the other
plots.

There are three poles in each pole zero diagram, though they are clustered
at the origin of each of the respective pole zero diagrams.

The zeros radiating beyond the unit circle were a point of some concern,
before it was revealed that the location of the zeros was unrestricted, and that
the presence of the poles within the unit circle was the only point of concern
regarding filter stability.
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Figure 32: Blackman window, pole zero diagram
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Figure 33: Blackman window, pole zero diagram (fc = 1995)
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Question 19

I used Matlab to calculate the frequency response of the three fir digital filters,
which simplified matters until I tried to calculate the phase of the filters. This
returned a sharply discontinuous phase response graph, with Matlab automat-
ically cycling values within a range of [−π . . . π]. The unwrap function, which
was previously used to successfully maintain phase progression information un-
der the iir filters, could not cope with the steep phase shift inherent to the filter.
I had to write my own very rudimentary unwrap script (donunroll3), which was
limited (very) to use with linearly varying phases. (Which the initial plots of
the discontinuous phase revealed it to be.)

The gain and phase are plotted around the unit circle in the s plane. This
unit circle in the s plane is related to the frequency plane by :

ω =
Ω

Tsample

2πf = Ωfsample

f =
Ωfsample

2π
Where Ω = [−π . . . π]

∴ f = [−4000 . . . 4000]

All the FIR filters were discovered to have linear phase response. Gibbs
phenomenon is normally associated with sudden cutoffs in the frequency domain
resulting in a ripple in the time domain. The sudden cutoffs applied by our
different windowing functions, in sampling the impulse response, induce similar
rippling in the frequency domain. This effect is incredibly pronounced in the
rectangular window filter, and results in a strong ripple at the edge of the
passband. It results in a barely perceivable waver in the passband when using
the Hamming window and in absent in the passband when using the Blackman
window.
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Figure 34: Rectangular window, digital filter normalised gain
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Figure 35: Rectangular window, digital filter phase response
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Figure 36: Hamming window, digital filter normalised gain
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Figure 37: Hamming window, digital filter phase response
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Figure 38: Blackman window, digital filter normalised gain
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Figure 39: Blackman window, digital filter phase response
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It became apparent in the later comparison of implementation vs theory, that
the graphs offer far more information when the gain was displayed in decibels.
The graphs below clearly show the ripple at the edge of the passband, moving
away from the passband as we progress from the rectangular window to the
Blackman window. Gibbs phenomena can not avoided, but the more advanced
windowing methods shift the oscillation away from the passband, where they
have a greatly diminished effect on the filtering process.
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Figure 40: Rectangular window, digital filter normalised gain in dB
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Figure 41: Hamming window, digital filter normalised gain in dB
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Figure 42: Blackman window, digital filter normalised gain in dB
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