
Extending reinforcement learning to Tetris

Short Paper

Donald Carr∗

Department of Computer Science
Rhodes University

Grahamstown 6139,South Africa
g02c0108@campus.ru.ac.za

September 26, 2005

Abstract

This paper discusses the reduction of the Tetris
state space in order to satisfy the pragmatic stor-
age and computational requirements of tabular re-
inforcement learning. A Sarsa based agent is imple-
mented, and shows convincing learning when using
simplified Tetris blocks.

1 Introduction

Reinforcement learning is a branch of artificial in-
telligence that focuses on achieving the learning
process in the course of an agents lifespan. This
entails giving the agent perception of its circum-
stances, a memory of previous events and reward-
ing its actions in the context of a rigid, predefined
reward policy.

Reinforcement learning has been successfully
utilised to solve a diverse range of problems, al-
though it has had limited success with large prob-
lems [Sutton et al., 2005]. This is due to a state
space explosion that inevitably occurs as the agent
tries to remember every single variation in increas-
ingly complex problems.

Suggestions for solving this problem have taken
many forms. Tesauro [Tesauro, 1995] created a
hybrid agent in his backgammon game that was
comprised of a neural network whose weighting
was progressively tuned by reinforcement learn-

∗Sponsored by Microsoft, Telkom, Thrip, Comverse,
Verso and Business Connexion

ing. Driessens [2004] suggested implementing a tree
structure which adds nodes as they are encoun-
tered, thereby skirting the problem. A common
approach in reinforcement learning is function ap-
proximation, where rather then giving the agent
a discrete memory, a function is gradually devel-
oped that takes a state as an input and issues back
a value. This removes the need for a one to one
relationship, and thereby eliminates the problem.
Another approach is to drastically reduce the de-
scription of the game to the extent where classic
tabular reinforcement methods can be employed.
This approach focuses on identifying and address-
ing redundancy within the full state space, and has
the advantage of employing well established rein-
forcement methods. This is the approach we have
decided to take.

Tetris is a well established game, and has been
thoroughly investigated by both the mathematical
and artificial intelligence communities. Although
conceptually simple, it is NP-complete [Breukelaar
et al., 2004] and any formalised optimal strategy
would be incredibly contentious. Tetris is found
in a variety of forms, and this paper is limited
to Tetris as defined by Fahey [2003]. Certain se-
quences of tetrominoes guarantee the death of the
agent, and therefore every game of Tetris invari-
ably ends [Brzustowski, 1992, Burgiel, 1997]. This
episodic behaviour makes comparing subsequent
games possible as the agents performance can be
gauged by the number of rows completed in the
course of a game.

Reinforcement learning has been successfully ap-

1



plied to a very reduced version of Tetris [Melax,
1998, Bdolah and Livnat, 2000], and less suc-
cessfully applied to a complete version of Tetris
[Driessens, 2004].

2 Tetris

The player is handed a tetromino uniformly drawn
from the limited range of predefined tetrominoes
shown in figure 1. The game occurs within a well
which is defined by a grid of blocks, with dimen-
sions twenty deep by ten wide. The tetrominoes
enter at the top and are set in a fixed position upon
hitting the first obstruction they encounter, which
is the bottom of the well failing all else. When a
row is completely filled it vanishes and the player
is rewarded.

Figure 1: The set of tetrominoes

3 The Tetris state space

Traditional reinforcement learning uses a tabular
value function, which has a one to one relationship
between states and values. Since the Tetris well has
dimensions twenty blocks deep by ten blocks wide,
there are 200 block positions in the well that can
be either occupied or empty.

State Space = 2200

This is an unwieldy number and since a value
would have to be associated with each state, this
representation is completely non-feasible. By con-
sidering the game from a human perspective, we
considered some practical reductions in state space.

Figure 2: The compete Tetris well

Assumption 1

The position of every block on screen is not a con-
sideration that is factored into every move. We
only consider the contour of the well when making
decisions. We limit ourselves to merely considering
the height of each column.

Figure 3: Height based Tetris well

State Space = 2010 ≈ 243

Assumption 2

The height of each column is fairly irrelevant ex-
cept perhaps when the height of a column starts
to approach the top of the well. Ignoring this for
the time being, the importance lies in the relation-
ship between successive columns, rather then their
isolated heights.

State Space = 209 ≈ 239

2



Figure 4: Height difference based Tetris well

Assumption 3

Beyond a certain point, height differences between
subsequent columns are indistinguishable. A hu-
man will not adopt different tactics when the
height difference between two columns advances
from nineteen to twenty. We could either cap the
maximum height differences, or start separating the
heights into fuzzy sets as the height differences in-
crease past certain thresholds. We cap the maxi-
mum height difference between wells as ± 3, and
round all height differences outside of this range
down to ± 3. The agent will therefore generalise
for any height difference greater then 3. Since only
the straight tetromino can span a height difference
of 3, and this tetromino can span any height differ-
ence, this assumption seems fair to make.

Figure 5: Capped height difference based Tetris
well

State Space = 79 ≈ 225

Assumption 4

The largest tetromino is four blocks wide. At any
point in placing the tetromino, the value of the
placement can be considered in the context of a
subwell of width four. These subwells could then
be reproduced across the extent of the full well.

State Space = 73 = 343 ≈ 28

Assumption 5

Since the game is stochastic, and the tetrominoes
are uniformly selected from the tetromino set, the

Figure 6: Capped height difference based Tetris
subwells

Figure 7: Mirror identical states

value of the well should be no different to its mirror
image.

State Space = 175

We now have a much reduced statespace, which
we hope will neither limit the player nor apprecia-
bly steer its policy. The implications of the assump-
tions should be considered before we progress.

Assumption 1 discards all information about the
subsurface structure of the well. The initial repre-
sentation can be perceived to store the location of
every hole in the structure. The agent will there-
fore be oblivious to any differences between trans-
forming to a said contour and the same contour
with spaces beneath the surface. The existing holes
are not important, but we may wish to include a
penalty for the holes introduced during a state tran-
sition. Assumption 2 introduces no obvious evils.
Assumption 3 removes the agents ability to distin-
guish between extremes in height differences. As-
sumption 4 removes the global context in which the
agent functions, and restricts his view to each in-
dividual transition. We may need to dynamically
re-establish the context in which he is function-
ing. Assumption 5 reduces the state space in a
non-simple fashion. The mirrored states are still
allocated space, but are never explored, removing
the computational burden they represent.

3



4 Implementation

The agent is given no indication of the next tetro-
mino it will be allocated, and can therefore only
factor the current tetromino into its decision pro-
cess.

When the value functions values are initialised
they are assigned an unrealistically large initial
value. This is referred to as optimistic learning,
and results in the agent attempting every tran-
sition, and sticking with those that disappoint it
least.

The value of the prospective states was ascer-
tained by using afterstates [Sutton and Barto,
2002]. The agent drops the given tetromino in each
and every possible orientation and each resulting fi-
nal configuration is hashed to a single value. Each
configuration is hashed twice, from both directions
in order to implement the mirror symmetry reduc-
tion. The smallest value is then always selected.
Each of these hash codes is compared with each
member of an array of existing hash codes. If the
hash code has not been seen before, it is included
in the array, otherwise it is redundant and there-
fore discarded. Each hash code is used to access
a value associated with that configuration in the
value function.

All the afterstate manipulations occur within a
virtual game, that is used exclusively by the agent
and is separate and distinct from the real game the
agent is confronted with.

The agent individually combines these values
with any immediate reward that is associated with
that particular state transition. The agent now has
an array of unique transitions and the total reward
associated with them.

If the agent is exploiting, it selects the array el-
ement with the largest reward associated with it.
If the agent is exploring using ε-greedy methods,
it selects randomly within this array a small per-
centage of the time. Given multiple elements with
the shared largest value, the agent selects randomly
amongst them. If the agent is exploring intelli-
gently through the softmax approach [Sutton and
Barto, 2002], the transitions are selected with a
probability proportional to their associated reward.

After selecting a transition, the value of the cur-
rent state is updated. The updated value is a com-
bination of the reward received in the transition,
the value of the destination state and the existing

value. The relation between these factors is de-
scribed by standard Sarsa [Sutton and Barto, 2002].

Qt+1(s) = Qt(st) + α(rt+1 + γQt(st+1)−Qt(st))

The agent is given a constant α value of 0.2, and
a γ value of 0.8 as these values were empirically as-
certained to inspire decent performance in a much
reduced version of Tetris. 1

Determining an unprejudiced reward function,
conducive to rapid learning, is a non-trivial task.

A negative reward for an increase in height
[Melax, 1998, Bdolah and Livnat, 2000] assumes
that height should be minimised and directs the
agents policy. This circumvents the point of Tetris,
which is to maximise the number of rows completed
and therefore maximise the agents lifespan. Al-
though there is a strong correlation between keep-
ing the height down and surviving, an optimal pol-
icy may involve defying this basic tenet. By reward-
ing the agent 100 points for each row completed, he
is driven to completing rows without being coerced
into a predetermined approach.

Unless the agent is punished for death, he re-
mains oblivious to its existence and will chance
upon it at the end of every game. In order to avoid
this we decided to punish the agent 100 points for
dying.

The numerical relationship between these com-
ponent rewards is not obvious, and observation of
the agents response to variation in these rewards
was used to guide the reward values.

5 Reduced Tetris

Figure 8: The set of reduced tetrominoes

1The author reproduced the results of Melax [1998],
Bdolah and Livnat [2000]

4



In order to verify that the agent is learning within
the perceptive framework of the reduced state space
we implemented a reduced Tetris. This operated
within a twenty by four well. We used a reduced
set of tetrominoes, shown in figure 8, in order to
simplify the learning process and establish whether
our state reductions would still permit active learn-
ing on the part of the agent.

Figure 9: Numbers of rows completed versus num-
ber of games played by reduced agent

These results are achieved by setting the agent
to exploit his knowledge from the offset and rely-
ing on the optimistic initial values for encouraging
exploration. It is evident from figure 9 that after
about 50 games the agent has discovered the opti-
mal policy.

These results are incredible although possibly
misleading, since the dimensions of the well are so
similar to those of the pieces. Since the dimen-
sions are so similar, the rewards are very frequent
and dwarf the long term values, thus putting the
agent is in a position to constantly reap reward.
The value of reinforcement learning comes from its
ability to sacrifice short term rewards in order to
gain a greater long term reward. As the well widens
the agent has to increasingly consider its long term
prospects.

It is apparent that the results drop off drastically
as the agent has to rely more heavily on the antic-
ipatory values. This is unsettling as it indicates
a value function which lends little foresight to the
agents actions, and is fairly insensitive to delayed
rewards.

Figure 10: Numbers of rows completed versus num-
ber of games played by reduced agent, width 5

6 Full Tetris

The reduced Tetris algorithm is extended by divid-
ing the full game into strips. At the afterstates
level, the agent considers a well of width four and
attempts all the possible translations and orienta-
tions of the tetromino in that well. The virtual
well is shifted across the real well by one block
width, and the agent repeats his transition discov-
ering procedure. This is repeated for every single
well of width four within the full well.

Figure 11: Reduced well progression across the full
well

Since there is overlap in-between translating the
well one step right, and shifting the agent one step
left, there are multiple values discovered for each
unique transition, in the context of different wells.

5



We chose to average these values, in order for the
value of the transition to convey its broad impact
on the agent.

The agent is trained in the well of width four,
and its value function is subsequently saved. The
agent is re-instantiated with the full well, of width
10, and its ability to learn is disabled. The afore-
mentioned value function is loaded and guides the
agent in evaluating the value of a certain transi-
tion. These transitions are idealised and created
around a well of width four, and we insert a weight-
ing which renders height inversely proportional to
weighting. This does not overwrite the value func-
tion, but encourages the agent to broaden out,
rather then building up the well. Since there is
a disparity between the reward associated with a
transition in the reduced well and the reward as-
sociated with the transition in the full well, the
agent must be granted another conceptual game,
enabling it to conceive of the global ramifications
of its actions.

We implemented the extended version of the
reduced Tetris game, complete with the reduced
blockset.

Figure 12: Results for full Tetris, width 6

The results depicted by figure 12 reveal an obvi-
ous improvement in the performance of the agent
with the inclusion of the trained value function
from the reduced player. The performance of the
agent is not steady, and varies largely over a short
number of games. It must be noted that the agent
is not displaying ”hunting” 2 and that no learn-

2An oversensitivity to negative feedback, resulting in os-
cillation around the optimal solution

ing is occurring at this stage, since the agent is
merely functioning under the guidance of a static
value function.

7 Considerations

Attempts at learning in the reduced well with the
complete blockset have met with little success.
Where as the reduced block set experiences a large
number of guiding rewards, and functions well with
little concern for the holes it is introducing in the
well structure, the complexity of the full block set
renders this ignorance infeasible. Dynamically al-
tering the appraisal value of a transition, by incor-
porating a covered hole introduced factor, has met
with little success. In some circumstances intro-
ducing a hole has little impact, and at others it can
completely negate the value of the transition.

Figure 13: Contrasting hole inclusion

The wells in figure 13 have both introduced the
same number of covered holes. They represent two
separate transitions, and therefore have differing
values associated with them. Altering their respec-
tive values by a constant penalty associated with
the each introduced hole would not reflect the im-
pact of the holes on the value of the transition. The
transition on the left has incremented the height
by three, and since it has introduced holes in these
rows, it left very little chance of these extra rows
being completed. The transition on the right has
placed the agent in a position where he is almost
certain to complete the row on the next turn, and
the height is temporarily incremented by the small-
est dimension of the placed tetromino.

8 Conclusion

In this paper we developed and justified an ap-
proach to reducing the Tetris state space, and
successfully implemented a reduced version of the

6



Tetris game. Our proposed method of extending
the reduced players experience to a full well was
shown to result in a game where learning was ev-
ident, but unremarkable. We commented on diffi-
culties encountered in reintroducing the full tetro-
mino set and the likely source of our difficulties.
The initial assumptions may have bordered on the
optimistic, and over-simplified the informational re-
quirements of a successful agent. Ideally the as-
sumptions can be relaxed to allow more insight to
the player, while maintaining a moderately sized
state space. There is clear evidence of learning in
the reduced game with a state space of 175, and
this state space could be considerably expanded to
tackle the full game, and still remain feasible.

References

Yael Bdolah and Dror Livnat. Reinforce-
ment learning playing tetris. 2000. URL
http://www.math.tau.ac.il/ mansour/rl-course/student proj/livnat/tetris.html.

Ron Breukelaar, Erik D. Demaine, Susan Ho-
henberger, Hendrik Jan Hoogeboom, Wal-
ter A. Kosters, and David Liben-Nowell.
Tetris is hard, even to approximate. In-
ternational Journal of Computational Ge-
ometry & Applications, 14:1-2:41, 2004. URL
http://theory.csail.mit.edu/ dln/papers/tetris/tetris.pdf.

John Brzustowski. Can you win at tetris? Master’s
thesis, University of British Columbia, 1992.

Heidi Burgiel. How to lose at tetris. Mathemat-
ical Gazette, 81:491:194–200, July 1997. URL
http://www.findarticles.com/p/articles/mi qa3773/is 199803/ai n8785130.

Kurt Driessens. Relational Reinforce-
ment Learning. PhD thesis, Catholic
University of Leuven, 2004. URL
http://www.cs.kuleuven.ac.be/ kurtd/PhD/.

Colin P. Fahey. Tetris specifica-
tions & world records, 2003. URL
http://www.colinfahey.com/2003jan tetris/2003jan tetris.htm.

Stan Melax. Reinforcement learning tetris example.
1998. URL http://www.melax.com/tetris/.

Richard S. Sutton and Andrew G. Barto. Re-
inforcement Learning: An Introduction. The

MIT Press, Cambridge, MA, 2002. URL
www.cs.ualberta.ca/sutton/book/ebook/index.html.

Richard S. Sutton, Gregory Kuhlmann, and Peter
Stone. Reinforement learning for robocup-soccer
keepaway, 2005.

Gerald Tesauro. Temporal difference
learning and td-gammon. Communica-
tions of the ACM, 38(3), 1995. URL
www.research.ibm.com/massive/tdl.html.

7


