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1 Background

ACM Classification System (1998) I.2.8 Problem Solving, Control Methods, and Search

Reinforcement learning is learning through interaction with an environment, and the consequences
of these interactions, with the intention of maximising long term cumulative reward. It is therefore
initially a process of trial and error, although as the entity gains experience it strives to maintain a
balance between exploration of new interactions which may provide reward, and the exploitation of
established beneficial interactions.

The agent functions on a policy which basically maps the perceived state of the environment
to an action. The policy utilises a value function which determines the total amount of reward
available in the infinite future, according to a weighting function which converges the value in the
limit. The value function gets individual state values from a reward function, which associates a
numerical value with individual states, and considers this in the context of the environment model.

Reinforcement learning has been successfully applied to simplified versions of Tetris12, although
there is no indication of anyone having had any success with devising reinforcement learning al-
gorithms that can handle the game as it is played by humans. Simplifications normally involve a
limited set of blocks with 2x2 dimensions, infinite stage height (game requirements remain constant)
and uniform reward for row completion, ignoring higher reward for higher risk (4 block completion).

These simplifications are not a minor consideration, and are countering the state space explosion
which occurs as the environment gets larger. This explosion is due to that fact that the possible
environment states are described by the permutation of the discrete blocks comprising the environ-
ment, giving the state space 2n complexity where the environment is composed of n blocks. The

1Yael Bdolah & Dror Livnat, 2000,http://www.math.tau.ac.il/ mansour/rl-course/student proj/livnat/Tetris.html
2Stan Melax,http://www.melax.com/Tetris/
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aforementioned simplifications have been applied to the game description rather then to the state
space, greatly limiting the usefulness of the agent and resulting in the successful implementation of
reinforcement learning in dull circumstances.

2 Aim

The aim of the project is to successfully create an agent which learns, via reinforcement learning
methods, how to excel at full-blown Tetris. It should learn this in a reasonable time period, and be
capable of playing the game with real time constraints just as a human would. The driving focus
will therefore be on minimising the 2n state space nominally required in considering all possible
combinations of blocks, and achieving reinforcement learning with a lower order of complexity then
that classically required by reinforcement learning.

3 Value to Science

Reinforcement learning holds the promise of delivering independent unprejudiced learning on the
part of an agent supplied with a suitably accurate representation of the environment it functions in,
and a corresponding reward function. The most pressing drawback associated with reinforcement
learning is the vast state space that is required to described complex environments, and consequently
the extensive processing time demanded. The previous implementations of Tetris have demonstrated
the flexible nature of reinforcement learning, and successfully extending it to a sophisticated version
of Tetris would display its pragmatic possibilities. This would greatly increase the field of possible
application, such as in game AI, or possibly even massively complex environments where the state
space complexity would normally rapidly overwhelm any conceivable processor due to the expo-
nential nature of the complexity. If we can redefine any state space to a computational feasible
size, reinforcement learning could be broadly applied to any scenario that afforded both accurate
modelling and reward description.

4 Plan of Action

4 weeks Research period

1 week Code Tetris and selecting structures

3 weeks Achieve basic learning with agent

5 weeks Optimisation of state space

3 weeks Testing
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4.1 Literature survey

• Reinforcement Learning : An Introduction - Richard S. Sutton and Andrew G. Barto

This is a practical introduction, covering everything from the history of reinforcement learning
to the investigation of several established applications of it. It will be used as a conceptual
base, and supply information about the wide span of approaches available within reinforcement
learning.

All the following items are from the Journal of Artificial intelligence, and are pertinent to my
considerations

• Reinforcement Learning: A Survey - Leslie Pack Kaelbling, Michael L. Littman and Andrew
W. Moore (vol 4, 1996)

• Evolutionary Algorithms for Reinforcement Learning - David E. Moriarty, Alan C. Schultz
and John J. Grefenstette (vol 11, 1999)

• Accelerating Reinforcement Learning by Composing Solutions of Automatically Identified Sub-
tasks - Chris Drummond (vol 16, 2002)

• Truncating Temporal Differences: On the Efficient Implementation of TD(lambda) for Rein-
forcement Learning - Pawel Cichosz (vol 2, 1995)

• Potential-Based Shaping and Q-Value Initialization are Equivalent - Eric Wiewiora (vol 19,
2003)

• Accelerating Reinforcement Learning through Implicit Imitation - Bob Price and Craig Boutilier
(vol 19, 2003)

• Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition - Thomas
G. Dietterich (vol 13, 2000)

• Learning to Coordinate Efficiently: A Model-based Approach - Ronen I. Brafman and Moshe
Tennenholtz (vol 19, 2003)

• Infinite-Horizon Policy-Gradient Estimation - Jonathan Baxter and Peter L. Bartlett (vol 15,
2001)

• Reinforcement Learning Using Recursive Least-Squares Methods - Xu, X., He, H. and Hu, D.
(vol 16, 2002)
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4.2 Code problem

I will create a graphically simple implementation of Tetris, utilising either Java or c++. Since the
focus of the project is on reinforcement learning, and not recoding Tetris, the possibility also exists
of adopting an existing open-source implementation of Tetris, or possibly even coding a learning
engine that can be incorporated into different implementations as desired.

There are numerous considerations to be made, and I will not launch straight into full Tetris.
I will rather initially focus on achieving rudimentary learning, before increasing the sophistication
of the system. I will also initially use conservative methods and data structures, and get more
experimental and daring as my confidence rises.

The most important initial consideration is the representation of the environment, since the agent
is fully dependent on the sensory perception we extend to it, and this can heavily impact on the
complexity of the environment. The implementation and representation of the 2 remaining defining
reinforcement structures (reward function and value function) will need to fulfil their required rolls
and interact accordingly.

4.3 Optimisations

This will have to take two forms :

• Coding optimisations : Selecting of data structures and optimal programming techniques

• Structural optimisations : Optimisations inherent to Tetris state space, such as those we as
humans utilise

The structural optimisations include symmetry, restricted slices of the environment and considering
just the silhouette or the contours of the blocks. Further optimisations will hopefully be accrued
over time, and greatly simplify the state space down to something more manageable.

5 Expected Results

An initially untrained unprejudiced persistent agent that graduates from the school of hard knocks
and becomes adept at playing Tetris, making decisions and successfully playing within the real time
requirements demanded of a human.

6 Possible Extensions

Time permitting, it would be both informative and constructive to try adapting the reinforcement
engine devised around Tetris to other similar applications. The complexity of porting the algorithm
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will obviously depend on the similarities shared by the programs.
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